Irony Detection with Attentive Recurrent Neural Networks
نویسندگان
چکیده
Automatic Irony Detection refers to making computer understand the real intentions of human behind the ironic language. Much work has been done using classic machine learning techniques applied on various features. In contrast to sophisticated feature engineering, this paper investigates how the deep learning can be applied to the intended task with the help of word embedding. Three different deep learning models, Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Attentive RNN, are explored. It shows that the Attentive RNN achieves the state-of-the-art on Twitter datasets. Furthermore, with a closer look at the attention vectors generated by Attentive RNN, an insight into how the attention mechanism helps find out the linguistic clues of ironic utterances is provided.
منابع مشابه
Fault Detection and Location in DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier
Microgrids have played an important role in distribution networks during recent years. DC microgrids are very popular among researchers because of their benefits. Protection is one of the significant challenges in the way of microgrids progress. As a result, in this paper, a fault detection and location scheme for DC microgrids is proposed. Due to advances in Artificial Intelligence (AI) and s...
متن کاملModelling Sentence Pairs with Tree-structured Attentive Encoder
We describe an attentive encoder that combines tree-structured recursive neural networks and sequential recurrent neural networks for modelling sentence pairs. Since existing attentive models exert attention on the sequential structure, we propose a way to incorporate attention into the tree topology. Specially, given a pair of sentences, our attentive encoder uses the representation of one sen...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملNIHRIO at SemEval-2018 Task 3: A Simple and Accurate Neural Network Model for Irony Detection in Twitter
This paper describes our NIHRIO system for SemEval-2018 Task 3 “Irony detection in English tweets.” We propose to use a simple neural network architecture of Multilayer Perceptron with various types of input features including: lexical, syntactic, semantic and polarity features. Our system achieves very high performance in both subtasks of binary and multi-class irony detection in tweets. In pa...
متن کاملKnowledge-based Recurrent Attentive Neural Network for Traffic Sign Detection
Accurate Traffic Sign Detection (TSD) can help drivers make better decision according to the traffic regulations. TSD, regarded as a typical small object detection problem in some way, is fundamental in the field of self-driving and advanced driver assistance systems. However, small object detection is still an open question. In this paper, we proposed a human brain inspired network to handle t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017